Who do you sync you are?
Smartphone Fingerprinting via Application Behaviour

Tim Stoéber
TU Kaiserslautern
t_stoebe@cs.uni-kl.de

Jens Schmitt
TU Kaiserslautern

jens.schmitt@cs.uni-kl.de

ABSTRACT

The overall network traffic patterns generated by today’s
smartphones result from the typically large and diverse set
of installed applications. In addition to the traffic generated
by the user, most applications generate characteristic traf-
fic from their background activities, such as periodic update
requests or server synchronisation. Although the encryption
of transmitted data in 3G networks prevents an eavesdrop-
per from analysing the content, periodic traffic patterns leak
side-channel information like timing and data volume. In
this work, we extract such side-channel features from net-
work traffic generated from the most popular applications,
such as Facebook, WhatsApp, Skype, Dropbox, and others,
and evaluate whether they can be used to reliably identify
a smartphone. By computing fingerprints from ~ 6 hours of
background traffic, we show that 15 minutes of monitored
traffic suffice to reliably identify a smartphone based on its
behavioural fingerprint with a success probability of 90%.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General—
Security and protection

Keywords

Smartphone; Authentication; Measurement

1. MOTIVATION

Over the last decade, smartphones became omnipresent.
According to [1], 419 million devices have been purchased
all over the world during the second quarter of 2012, and
half of all US mobile subscribers own a smartphone [2]. The
main reasons for such a popularity of smartphone usage are
the overall improvement in performance, battery life, and
decreasing price of the mobile Internet access over 3G ra-
dio networks. In particular, the frequent Internet access is
crucial for the success of application markets and a high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’13, April 17-19, 2013, Budapest, Hungary.

Copyright 2013 ACM 978-1-4503-1998-0/13/04 ...$15.00.

Mario Frank
UC Berkley
mfrank@berkeley.edu

Ivan Martinovic
University of Oxford

ivan.martinovic@cs.ox.ac.uk

I Traffic initiated by user interaction
Bl Traffic w/o user interaction

Number of Bursts

2 4 6 8 10 12 14 16 18 20 22 24
Hours since Recording Start

Figure 1: Interactive- and non-interactive smart-
phone traffic (24 hours). Only about 30% of trans-
missions are triggered by user interactions.

number of downloaded applications (Apps), such as Email
clients, Facebook, WhatsApp, Skype, or Dropbox. Most of
these Apps generate traffic, which is not only initiated by
the user, but also from the Apps itself to maintain the most
current state, receive updates, or synchronise cloud services.
For example, Figure 1 shows results of our measurements
of network traffic transmitted to and from different smart-
phones during 24h. We identified that only 30% of the over-
all smartphone traffic can be attributed to user interactions
(we refer to is as interactive traffic), and 70% of the traffic
belongs to background activities generated by different in-
stalled Apps. Many of such background activities result in
characteristic traffic patterns, especially in the time domain
and in the volume of transmitted data. In addition, the gen-
erated traffic highly depends on the multitude of installed
applications and their personal configuration.

The 3G/UMTS radio access technology implements encryp-
tion at the data link-layer to guarantee the confidentiality
of the users’ data in the presence of a wireless eavesdrop-
per. Yet, the resulting application-dependent traffic pat-
terns may still pose a privacy risk. A wireless eavesdrop-
per might be able to identify a particular smartphone by
analysing only the side-channel information of encrypted
traffic. Hence, this motivates the main research question
of this work: is it possible to identify a smartphone based
on the traffic behaviour of the installed applications, arising
from their background activities? Importantly, we assume
that an eavesdropper is completely agnostic to the content
of the traffic and that security services of the current UMTS
radio access network remain unaffected.

In our scenario, the adversary is a passive eavesdropper
which is able to capture encrypted wireless 3G/UMTS data
from a victim’s smartphone and using that traffic to extract

smartphone fingerprints. The fingerprints would then allow
him to identify the device afterwards and make a point of
whether the victim’s smartphone is present within a certain
UMTS radio cell. While the granularity of such UMTS cell-
based tracking does not provide a very fine-grained physical
position of the smartphone, it might still reveal important
privacy information and help in launching more sophisti-
cated attacks, for example, by detecting if the user is at
home or at the workplace.
To assess the threat of identifying smartphones through an-
alysing side-channel information of background traffic, we
attempt to answer the following research questions:
e How discriminative are the features of smartphone traf-
fic generated by applications’ background activities?
e Are individual configurations of installed Apps suffi-
cient to distinguish between different smartphones?
e How long does it take to identify a smartphone?

2. THREAT MODEL AND ASSUMPTIONS

We assume that the attacker is located within the range
of UMTS transmissions. The inherent broadcast character-
istic of wireless communications allows him to eavesdrop on
UMTS physical signals. Hence, our main assumption is that
the attacker is able to demodulate and demultiplex the phys-
ical layer and measure side-channel information such as the
amount of transmitted data and timing information. In or-
der to acquire such side-channel information, the attacker
must extract the users’ data streams from the superimposed
signal on the corresponding wideband code division multiple
access (WCDMA) air interface. In this section, we briefly
discuss technical requirements and the complexity to gather
side-channel information without the possession of spread-
ing and scrambling codes used in UMTS.

The 3G/UMTS air interface is based on WCDMA, a code
multiplexing technique to separate the medium into single
channels and enable simultaneous transmissions over the
same frequency. The users’ data (payload) is transmitted
over so-called Dedicated Physical Data Channels (DPDCH),
and its correct demodulation requires the knowledge of scram-
bling and spreading codes as specified in [3]. The spread-
ing codes increase the actual bandwidth of the signal, while
the scrambling codes are multiplied chip by chip with the
already spreaded signal to achieve orthogonal coding. The
scrambling codes separate distinct base stations on the down-
link and different user equipments (UEs) on the uplink.
However, none of these coding techniques were designed for
security reasons and the security services are offered by the
higher layers of the UMTS network stack. In particular,
both spreading and scrambling codes can be “brute-forced”
as their search space is not large (and the assignment of
spreading codes on the uplink is almost completely specified
in [3]). For example, assuming one base station (i.e., Node-
B) using one primary scrambling code for its cell, there are
less than 1000 available spreading codes that could be em-
ployed after deducting codes for reserved channels [3]. The
scrambling code is more expensive to find, as it is generated
by 18 bit (downlink) and 24 bit (uplink) seeded shift regis-
ters, respectively. Yet, none of these lengths presents a sig-
nificant computational burden for an adversary. Moreover,
the Node-B’s scrambling code for downlink is automatically
determinable by the smartphone’s cell search procedure. In
our experiments, we therefore investigate how the availabil-
ity of only the downlink traffic affects the success probability

of correctly identifying a smartphone. Table 1 shows a cost
estimate for obtaining the required codes in the downlink
and uplink cases.

Scrambling
Up 224 possibilities
Down 218 possibilities’

Spreading
max. 7 possibilities
max. 1000 possibilities

Table 1: Cost estimate for attaining scrambling- and
spreading codes. Determination of Node-B’s scram-
bling code is less expensive in contrast to the UEs’.

In summary, we believe it is reasonable to assume that
there is a practical way for an adversary to capture the en-
crypted UMTS traffic and to use it for fingerprint acquisition
(i.e., the training phase) and for fingerprint detection (i.e.,
the attack phase). During fingerprint acquisition, the ad-
versary should know whether the extracted traffic belongs
to the victim. One concrete approach to achieve this would
be to inject known traffic markers by initiating a call, send-
ing an email, or sending an SMS to the victim. However,
the detailed analysis of this approach is out of the scope of
this work.

3. DATA ACQUISITION

The first dataset consists of recorded traffic from five dis-
tinct users for whom all 3G network communication has been
captured in the background for approximately eight hours.
During this collection phase, the users interacted with their
smartphones without any restrictions.

Due to the low scope of the user dataset, we recorded 8
hours from 20 user devices with different combinations of
Apps installed. We call this dataset non-interactive because
transmissions were captured without any user interactions
that could cause traffic.

Our testbed was a Samsung Galaxy Nexus running the An-
droid operating system version 4.0.4. Instead of sniffing traf-
fic on the UMTS link, we captured directly on the devices’
3G interface using tcpdump. We randomly picked 20 dis-
tinct combinations out of a universe of 14 Apps. Each com-
bination is composed of seven Apps, whereas we assured
the marginal cases to be present, meaning two combinations
with six common applications and only one differing, as well
as two combinations with completely disjoint subsets.

The 14 Apps were selected from the list of top free Android
applications from the Google Play Store. We only picked
Apps that actually produce background transmissions with-
out user interactions, since otherwise they would have no
effect on the traffic behaviour of the device. This comprises
cloud services, several Messengers, or Email clients. The
complete list of chosen Apps with some additional informa-
tion from https://play.google.com/store/apps (accessed
26/09/2012) can be found in Table 2.

4. FINGERPRINTING

In this section we first introduce the notion of a burst,
which plays a central role in our framework, and then we
describe the process of creating smartphone fingerprints.
As an input, the process requires traffic extracted from a
specific device. The traffic is a chronological sequence of
incoming and outgoing packets. Each packet is represented
as a vector p; = (t;,si,d;). Hence, the only information

'Node-B’s scrambling code determinable on CPICH.

Index Name Downloads Rank
1 D Email - native
2] Facebook 100 - 500 4

3 ® WhatsApp 50 - 100 9

4 &) Skype 50 - 100 12

5 YW Twitter 50 - 100 14

6 %+ Dropbox 10 - 50 15

7 @ Instagram 10 - 50 23

8 [Flipboard 5-10 27

9 Viber 10 - 50 34
10 @) Evernote 10 - 50 156
11 @ Spotify 10 - 50 66
12 Z 1 Wetter.com 5-10 not ranked
13 Skydrive 0.1-0.5 422
14 @ ChatON 10 - 50 50
15 E:] Google Account - native

Table 2: Universe of applications from which the
emulating combinations were chosen.

" MMMM ||

IBST00 194700 193700 195700 201700 203700 205700 211700 213700 205700 221700
Time of day

Data amount [Bytes]

Figure 2: 3.5 hours of smartphone traffic. Idle
phases alternating with transmissions illustrate the
burstiness. As can be observed similar burst pat-
terns occur in regular intervals.

needed about a packet is its arrival time ¢; in the form of
an absolute or relative time stamp, its size in bytes s; and
the direction d; in terms of a Boolean flag distinguishing
between incoming and outgoing packets.

Taking a closer look at smartphone traffic, one can observe
alternating idle periods followed by short peaks of incoming
and outgoing data transfers. This behaviour, which we refer
to as burstiness, is illustrated in Figure 2 and has also been
observed by Falaki et al. in [10]. A single burst, represented
by the peaks of the black curve, consists of a sequence of
packets that are mostly semantically connected like, e.g.,
packets from the same TCP connection.

4.1 Burst Separation

Since we cannot analyse the payload to identify and ag-
gregate packets from the same application (using e.g., TCP
flows), the bursts are extracted by only considering the tim-
ing information. We define a burst distance to be the mini-
mum length of an idle interval between two packet arrivals.
If the arrival time of two subsequent packets is larger, the re-
spective packets are considered to belong to different bursts.
Hence, extracting bursts from the captured traffic is equiv-
alent to setting cuts in the packet sequence and aggregating
all packets which are within these borders to one burst.
Clearly, selecting the burst distance is an important param-
eter. On the one hand, we may prefer a small distance be-
cause this avoids the aggregation of several unrelated trans-

missions. On the other hand, choosing a too small distance
may result in splitting related transmissions.

In agreement to the observations by Falaki et al. [10], we
observed that 95% of all packets arrive at most 4.43s after
their predecessors (4.5s in [10]). Therefore, we selected a
distance threshold of 4.5s for burst separation.

4.2 Burst Characterisation

In the next step, we identify the most discriminative fea-
tures that distinguish well between bursts generated by dif-
ferent smartphones. In addition to the mean values of the
packet inter-arrival times and packet sizes, we also take into
account the 20%, 50% (median) and 80% quantiles of the
timing and size distributions. In the presence of outliers and
non-Gaussian distributions, these measures are more robust
in comparison to the simple arithmetic mean. For the same
reason, we apply the median absolute deviation (MAD) in
terms of packet sizes and inter-arrival times. The MAD is
the median of the deviations from the median [14]. Let X
be a sample set vector, it is computed as

MAD = median(|X — median(X)|). (1)

In the following two subsections we examine the individual
features in terms of their importance. The purpose of this
analysis is not primarily to minimize computational costs in
the training phase or to address the curse of dimensionality;
we are rather interested in gaining a better understanding
of this particular kind of data. The complete list of features
is listed in Table 3.

Feature [rMI
Median absolute deviation (MAD) packet size 16.6%
50% quantile packet size 15.7%
Standard deviation packet size 15.6%
80% quantile packet size 14.7%
20% quantile packet size 14.6%
Mean packet size 13.8%
Byte ratio 13.8%
Distance to next burst 8.5%
Number of outgoing bytes 7.2%
80% quantile packet interarrival time 7.0%
Mean packet interarrival time 6.9%
Number outgoing packets 6.9%
Packet ratio 6.5%
50% quantile packet interarrival time 6.2%
Throughput 5.9%
Duration 5.8%
Number of incoming packets 5.7%
Number of incoming bytes 5.6%
Median absolute deviation packet interarrival time | 5.5%
Standard deviation packet interarrival time 5.5%
Mean consecutive outgoing packets 4.8%
20% quantile packet interarrival time 4.5%
Mean consecutive incoming packets 4.2%
Random feature 0.9%

Table 3: Feature list with respective relative mutual
information (rMI) for the non-interactive dataset.

To determine the importance of individual features, we com-
pute the mutual information I(F;;U) = H(U) — H(U|F;)
between a feature F; and the target variable (the user ID)
U. To account for the fact that the entropy of target vari-
ables can vary, we compute the relative mutual information
(rMI) that can be computed as a fraction of entropies:

WMI(F; U) = 1(Fs U)/H(U) = 1 = HUIR)/HU) (2)

The entropy H(U) quantifies the uncertainty about the ID.
The conditional entropy H(U|F;) quantifies the remaining
uncertainty if the value of feature 4 is known. The difference
of H(U) and H(U|F;) becomes maximal if the feature fully
determines the user ID.

Before computing rMI, it is necessary to quantise the con-
tinuous feature values. To account for outliers, we divided
the 0%- to the 90%-quantile into bins and accounted all out-
liers to the last quantile. The results for rMI are shown in
Table 3. To offer a point of reference, we introduced an arti-
ficial feature with random values that should hardly provide
any information about the user.

We refrain from choosing only the best ranked features as a
result of our analysis. The reason is that even variables with
a small independent informativeness can provide rich infor-
mation when combined [13]. In contrast, pairs of variables
with large rMI could be fully redundant.

4.3 Classifiers

As it is common practice in supervised learning, we turn

this multi-class classification problem with n user IDs into n
individual binary classification problems. In each individual
problem, a classifier must decide if the current data comes
from the respective phone or not. We consider each phone’s
classifier as the fingerprint of the phone. For each such prob-
lem, the observation matrix, used as an input for training
the classifier, consists to 50% of bursts from the legitimate
user. The remaining 50% are filled by an equal number of
bursts from other users. This way, we only have two class
labels, namely user and —user. Each observation or burst
in the observation matrix is represented by a row whereas
each of the 23 columns corresponds to a feature.
In terms of classification, we use the k-nearest neighbors al-
gorithm (kNN) as well as a support vector machine (SVM).
The kNN is capable of directly solving the original multi-
class classification problems since it simply stores the feature
vector of every observation and its corresponding categorial
label. A new object is then classified by taking the majority
label of the k nearest neighbors in the feature space. To
estimate the optimal setting for the parameter k, we per-
form 5-fold cross-validation on the training data testing all
odd numbers from 1 to 13. In contrast to kNN, the SVM
does not store all feature vectors but instead computes one
or several hyperplanes that divide the set of observations
according to their class labels, whereas the distance of the
hyperplane to the nearest objects (called support vectors) is
maximised.

5. EXPERIMENTATION
5.1 Single Burst Classification

The goal of this experiment is to investigate the feasibil-
ity of our identification approach. This requires to test for
possible collisions between each user’s fingerprint with the
other fingerprints.

When referring to a particular user from the non-interactive
dataset, we always mean the App combination on the phone
of this user.

For each user u out of the dataset, a fingerprint was con-
structed by training a classifier with 70% of u’s bursts and
the same amount of bursts from other users, both randomly
chosen. After the fingerprints were generated, we started
classifying the remaining 30% of u’s bursts as well as equally

40.8

40.7

40.6

0.5

0.4

0.3

0.2

0.1

0

123456 7 89 10111213141516 1718 1920

Figure 3: EKNN results for matching users against
every fingerprint (Non-interactive dataset). The
brighter the color, the more bursts were classified
to belong to the fingerprint. The numbers inside
the cells indicate the count of common Apps of two
combinations.

Non-interactive dataset
17.44% 22.85%
32.60% 33.46%

User dataset
FNR | 13.60% 16.99%
FPR | 24.02% 31.41%

Table 4: False negative- and false positive rates for
feasibility experiment (SVM left, kNN right).

many random bursts from every single other user, assuring
not to employ any burst that has been used for building the
classifier. Each classification combination was repeated 20
times. In every round, the training- and test set were pop-
ulated by newly, randomly selected bursts.

As a result, we obtain the number of false negative- (FN)
and false positive (FP) class assignments. FNs for the cases
where we match users on their own fingerprints and FPs for
the remaining cases. Fig. 3 depicts the results for the kNN
classification of the non-interactive dataset. The cells of the
colour matrix show how well the traffic of the column-user
matched the fingerprint of the row-user. The brighter the
colour, the more bursts have been classified to match the fin-
gerprint. The numbers within the cells indicate how many
applications the two compared phones have in common.

In general, SVM performs better, especially in terms of the
false negative rate (diagonal). The precise false positive- and
false negative rates for both classifiers and both datasets are
given in Table 4.

The results for SVM on the user dataset are best. This is not
only due to the minor scope of the dataset but also because
the event of two real users having nearly the same combi-
nation of installed Apps and similar configurations is rather
unlikely. This makes the UMTS application attractive to
an attacker, since he would only have to compare the traffic
with a fixed number of users per cell.

Obviously it becomes more and more difficult for the classi-
fier to distinguish users with many shared Apps and, conse-
quently, similar traffic. However, there are also other in-
fluences. E.g. the App Spotify tends to generate many
bursts. Therefore, matching two phones against each other
that both contain Spotify will exacerbate the decision of the

401

I
Py
o]

30

20+ ST

Error rate [%)]

ﬁ'
0
B

Time [min]

FUS VY T CRD U S W & 40

8 10 12
Number of Bursts

svi _—
-

— 40 kNN S s
X B —15__
[=aR _— =

- £
g s E
@ - — 10—
= — g
o =
LI’] =

\ =
o\

! -wﬁﬂjj.J.J.J.J.J.JJ.Jllull (Uit

15 20 25 0
Number of Bursts
50— =20

L
- / | |
30 | 5 40

15 20 25 3 3
Number of Bursts

401 s

\
I
Py
o]

=
S

Error rate [%)]
Time [min]

I
o

S

3!

Figure 4: Error rate versus the number of bursts
used for classification. To achieve a median classi-
fication error rate of 0%, an attacker would have
to wait approximately 3 min in case of the user
dataset (upper chart), 12 min for the non-interactive
dataset (middle chart), and 15.5 min when only non-
interactive downlink data is used (lower chart).

classifier. However, we always used Spotify with the same
configuration which made the task unrealistically hard. Dis-
tinct configurations (Playlists etc.) might affect the traffic
and render it more unique. Overall, the investigated setting
can be considered rather conservative, since the emulated
users have on average 3.5 out of only 7 installed Apps in
common. We assume to observe more variety in the wild.

5.2 Effects of Capturing Duration

The objective of this experiment is to find out how much
traffic one must capture to make a reliable statement whether
it belongs to the victim or not. This means we have to inves-
tigate classification results for varying amounts of available
traffic. To that end, we must evaluate the burst inter-arrival
times to find out how long an attacker should wait to gather
a certain amount of traffic.

As in the last experiment, we generate a fingerprint for each
user with a training set containing 70% of its bursts and
equally many random bursts from other users. Yet, unlike
last time, the training set is filled with the remaining 30%
of the users bursts as well as the same amount of randomly
chosen bursts from other users, assuring to not employ those
that have been used for training.

Instead of classifying each single burst separately, we apply
a sliding window of size k € {1,2,...40} such that we clas-
sify k bursts and take the majority vote of the k labels. This
procedure is repeated in 20 times for every user to quantify
random effects.

The two upper charts in Fig. 4 depict the results for the user
dataset and the non-interactive dataset applying the kNN al-

gorithm and the SVM. The bars reach from the 25%-quantile
to the 75%-quantile. The dots inside the bars represent the
median values. As can be seen, the SVM generally out per-
forms kKNN. After 6 bursts for the user dataset and after
23 bursts for the non-interactive data, a median error rate
of 0% is reached. In terms of time, depicted by the linear
function, an attacker would have to wait merely ~3 minutes
and ~12 minutes, respectively.

5.3 Effect of Using Downlink Data Only

In particular for UMTS, where it is easier to capture traf-
fic on the downlink from the Node-B to the user equipments
instead of the uplink, it is interesting to restrict the finger-
printing to downlink data. Fig. 4(bottom) illustrates the
results of the experiment from Section 5.2 in the downlink-
only case. The outcome indicates that the median error only
impairs slightly. To achieve an error rate of 0%, the attacker
must monitor ~15.5 minutes compared to 12 minutes for the
bidirectional case. In this scenario, kNN outperforms SVM
by far. This is most likely due to the fact that the SVM per-
formance relies on particular features that are not available
anymore in the downlink case like Packet ratio, #Packets
out, Byte ratio, #Bytes out and Mean consecutive out.

6. RELATED WORK

There has been much research in the area of device fin-
gerprinting. In most cases, side-channel information, like
hardware and manufacturing inconsistencies, or differences
in driver implementations, were exploited as a discrimina-
tive component. Probably, one of the first publications in
this direction was [15] by Kohno et al. in 2005. They in-
troduced a mechanism to remotely fingerprint and identify
devices based on their clock skews, which were in turn based
on information from TCP and ICMP timestamps. In [11],
the authors succeeded in fingerprinting and identifying wire-
less device drivers on the basis of a statistical analysis of
a device’s interarrival rate of IEEE 802.11 probe request
frames. Since the standard does not provide a specific value
for the scanning intervals of these management frames, dis-
tinct drivers tend to differ in their implementations. Based
on this work, Loh et al. extended the discriminability of this
feature to be even capable of distinguishing between single
devices instead of device drivers [7].

In [12, 19, 5, 4], authors exploit manufacturing inconsisten-
cies and hardware imperfections that have effect on the re-
sulting transmission signal in order to differentiate between
single entities. In addition, one can find a very detailed
review of physical-layer identification systems and state-of-
the-art techniques in [6].

All previously mentioned approaches are aiming at remote
identification of devices, however the fingerprint does not
include any form of application behaviour.

Another related area of research includes various approaches
to traffic classification. Some of them use transport layer
statistics like packet size, connection duration and ratio of
bytes sent in each direction, combined with unsupervised
machine learning algorithms [9, 21]. Even though the fea-
tures are solely from the time and byte dimension, both
techniques still rely on the notion of flow or connection,
respectively. Clearly, traffic analysis countermeasures like
padding can be used to conceal user identities. However,
Dyer et al. showed in [8] that bandwidth-efficient, general-
purpose traffic analysis countermeasures mostly fail. In [22],

the authors use a packet-level classification, only resorting
to link layer features which makes their approach applicable
even under payload encryption. Similarly to our work, their
methodology uses supervised learning algorithms like SVM
and neural networks. Yet, their application and network
environment is not focused on wireless networks. Related
work on detecting network applications discusses more in-
formation that can be leaked through traffic analysis, e.g.,
visited web pages [16], language and spoken phrases [20] or
watched videos [18]. Recently, in [17], the authors anal-
ysed the security of the TLS Record Protocol and identified
attacks against TLS, even if variable length padding (as a
countermeasure against SSL/TLS side-channel information
leakage) is used. While many smartphone Apps establish an
SSL/TLS connection with their servers, in our work, we do
not consider SSL/TLS flows, but the overall aggregated traf-
fic from all Apps and without any requirement to identify
the SSL/TLS traffic.

7. CONCLUSIONS

In this work, we investigated the question of whether back-
ground traffic generated by smartphone applications can be
used as a fingerprint to identify and discriminate different
smartphones. We based the fingerprint features only on fea-
tures available as side-channel information such as timing
and data volume. These features can be extracted through
monitoring of wireless channels used by the UMTS radio
technology and without assuming any knowledge of the pay-
load. Our results show that the multitude of installed ap-
plications and their background communication generates a
unique behaviour that allows an eavesdropper to accurately
identify smartphones. To that end, we designed extensive
experiments including traffic monitoring from the most pop-
ular Apps and demonstrated that even if the smartphones
have a large number of the same applications installed, they
still can be successfully identified with a very high accuracy.
In particular, after the fingerprint is generated, the eaves-
dropper requires only ~15min. of the captured traffic to
achieve more than 90% classification accuracy.

These results have direct impact on the user’s privacy as
they justify that an adversary is able to detect whether a
smartphone is associated with a certain UMTS radio cell.

Acknowledgments

This research was partially supported by the Swiss National
Science Foundation and by Intel through the ISTC for Se-
cure Computing.

8. REFERENCES

[1] Gartner. http://tinyurl.com/d7ptpqc, 2012. [Online;
accessed 11/10/2012].

[2] Nielsen. http://tinyurl.com/8y2e773, 2012. [Online;
accessed 11/10/2012].

[3] 3GPP. TS 25.213, Spreading and modulation (FDD).
Technical report, 1999.

[4] K. Bonne Rasmussen and S. Capkun. Implications of radio
fingerprinting on the security of sensor networks. In Third
International Conference on Security and Privacy in
Communications Networks, SecureComm’07, 2007.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
device identification with radiometric signatures. In
Proceedings of the 14th ACM international conference on
Mobile Computing and Networking, MobiCom’08, 2008.

[6] Danev B., Zanetti D., Capkun S. On physical-layer
identification of wireless devices.

[7]

[9]

(10]

(11]

(12]

(13]
(14]

(15]

[16]

(17]

(18]

(19]

20]

21]

(22]

http://www.syssec.ethz.ch/research/OnPhysId.pdf,
2012. [Online; accessed 22/10/2012].

L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee.
Identifying unique devices through wireless fingerprinting,.
In Proceedings of the first ACM conference on Wireless
Network Security, WiSec’08, 2008.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In IEEE Symposium on Security and
Privacy, SP’12, 2012.

J. Erman, M. Arlitt, and A. Mahanti. Traffic classification
using clustering algorithms. In Proceedings of the 2006
SIGCOMM workshop on Mining Network Data,
MineNet’06, 2006.

H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and
D. Estrin. A first look at traffic on smartphones. In
Proceedings of the 10th annual conference on Internet
Measurement, IMC’10, 2010.

J. Franklin, D. McCoy, P. Tabriz, V. Neagoe,

J. Van Randwyk, and D. Sicker. Passive data link layer
802.11 wireless device driver fingerprinting. In Proceedings
of the 15th conference on USENIX Security Symposium,
USENIX-SS’06, 2006.

R. M. Gerdes, T. E. Daniels, M. Mina, and S. F. Russell.
Device identification via analog signal fingerprinting: A
matched filter approach. In In Proceedings of the Network
and Distributed System Security Symposium, NDSS’06,
2006.

I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 2003.

F. R. Hampel. The breakdown points of the mean
combined with some rejection rules. Technometrics.

T. Kohno, A. Broido, and K. Claffy. Remote physical
device fingerprinting. IEEE Transactions on Dependable
and Secure Computing, 2005.

M. Liberatore and B. N. Levine. Inferring the source of
encrypted http connections. In Proceedings of the 13th
ACM conference on Computer and Communications
Security, CCS ’06, 2006.

K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size
does matter: attacks and proofs for the tls record protocol.
In Proceedings of the 17th international conference on The
Theory and Application of Cryptology and Information
Security, ASTACRYPT’11, 2011.

T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and

T. Kohno. Devices that tell on you: privacy trends in
consumer ubiquitous computing. In Proceedings of 16th
USENIX Security Symposium on USENIX Security
Symposium, SS’07, 2007.

O. Ureten and N. Serinken. Wireless security through rf
fingerprinting. Canadian Journal of Electrical and
Computer Engineering, 2007.

C. Wright, L. Ballard, S. Coull, F. Monrose, and

G. Masson. Spot me if you can: Uncovering spoken phrases
in encrypted voip conversations. In IEEE Symposium on
Security and Privacy, SP’08, 2008.

S. Zander, T. Nguyen, and G. Armitage. Automated traffic
classification and application identification using machine
learning. In The IEEE Conference on Local Computer
Networks, 2005.

F. Zhang, W. He, X. Liu, and P. G. Bridges. Inferring
users’ online activities through traffic analysis. In
Proceedings of the fourth ACM conference on Wireless
Network Security, WiSec’11, 2011.

