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Abstract—Android and Facebook provide third-party ap-
plications with access to users’ private data and the ability
to perform potentially sensitive operations (e.g., post to a
user’s wall or place phone calls). As a security measure,
these platforms restrict applications’ privileges with permission
systems: users must approve the permissions requested by
applications before the applications can make privacy- or
security-relevant API calls. However, recent studies have shown
that users often do not understand permission requests and are
unsure of which permissions are typical for applications. As a
first step towards simplifying permission systems, we cluster a
corpus of 188,389 Android applications and 27,029 Facebook
applications to find patterns in permission requests. Using a
method for Boolean matrix factorization to find overlapping
clusters of permissions, we find that Facebook permission
requests follow a clear structure that can be fitted well with only
five patterns, whereas Android applications demonstrate more
complex permission requests. We also find that low-reputation
applications often deviate from the permission request patterns
that we identified for high-reputation applications, which
suggests that permission request patterns can be indicative of
user satisfaction or application quality.

Keywords-Unsupervised learning; pattern mining, Smart-
phones; Permissions; Android; Facebook

I. INTRODUCTION

Open development platforms like Android and the Face-
book Platform have resulted in the availability of hundreds
of thousands of third-party applications that end users can
install with only a few clicks. Consequently, end users are
faced with a large and potentially bewildering number of
choices when looking for applications. Users’ installation
decisions have privacy and security ramifications: Android
applications can access device hardware and data, and Face-
book applications can access users’ profile information and
social networks. As such, it is important to help users select
applications that operate as the user intends.

Android and Facebook use permission systems to con-
trol the privileges of applications. Applications can only
access privacy- and security-relevant resources if the user
approves an appropriate permission request. For example, an
Android application can only send text messages if it has the
SEND_SMS permission; during installation, the user will see
a warning that the application can “Send SMS messages” if
the installation is completed. These permission systems are
intended to help users avoid privacy- or security-invasive
applications. Unfortunately, user research has demonstrated
that many users do not pay attention to or understand the
permission warnings [1], [2]. A major problem here is that

users do not know what permission combinations are typical
for applications.

Our work is a first step in the direction of simplifying
permission systems by means of statistical methods. We
propose to identify common patterns in permission requests
so that applications that do not fit the predominant patterns
can be flagged for additional user scrutiny. Towards this
goal, we apply a probabilistic method for Boolean matrix
factorization to the permission requests of Android and
Facebook applications. We find that while applications with
good reputations (i.e., many ratings and a high average
score) typically correspond well to a set of permission
request patterns, applications with poor reputations (i.e., less
than 10 ratings) often deviate from those patterns.

The primary contribution of this paper is the first analysis
of permission request patterns with a statistically sound
model. Our technique captures the concept of identifying
“unusual” permission requests. Our evaluation demonstrates
that our technique is highly generalizable, meaning that
the found clustering is stable over different random subsets
of the data. We find that permission request patterns can
indicate user satisfaction or application quality.

II. BACKGROUND AND RELATED WORK

Android and the Facebook Platform support extensive
third-party application markets. They use permission sys-
tems to limit applications’ access to users’ private informa-
tion and resources.

A. Android

The Android Market is the official (and primary) store
for Android applications. The Market provides users with
average user ratings, user reviews, descriptions, screenshots,
and permissions to help them select applications. Android
applications can access phone hardware (e.g., the micro-
phone) and private user information (e.g., call history) via
Android’s API. Permissions restrict applications’ ability to
use the API. For example, an application can only take a
photograph if it has the CAMERA permission. Developers se-
lect the permissions that their applications need to function,
and these permission requests are shown to users during
the installation process. The user must approve all of an
application’s permissions in order to install the application.

Several studies have examined Android applications’ use
of permissions. Barrera et al. surveyed the 1, 100 most
popular applications and found that applications primarily



request a small number of permissions, leaving most other
permissions unused [3]. They used self-organizing maps (a
dimensionality reduction technique) to visualize the relation-
ship between application categories and permission requests;
based on this analysis, they concluded that categories and
permissions are not strongly related. Their focus was on
visualization and their findings are not applicable to iden-
tifying unusual permission request patterns; they relied on
the minimization of a Euclidian cost function to find a low
dimensional visualization of the data, whereas we use a
generative probabilistic model to learn request patterns. Felt
et al. and Chia et al. surveyed Android applications and
identified the most-requested permissions [4], [5]. Chia et
al. also found several correlations between the number of
permissions and other factors: a weak positive correlation
with the number of installs, a weak positive correlation with
the average rating, a positive correlation with the availability
of a developer website, and a negative correlation with the
number of applications published by the same developer.
We expand on these past analyses, and our analysis of
permission requests is by far the largest study to date.

Other research has focused on using machine learning
techniques to identify malware. Sanz et al. applied several
types of classifiers to the permissions, ratings, and static
strings of 820 applications to see if they could predict
application categories, using the category scenario as a
stand-in for malware detection [6]. Shabtai et al. similarly
built a classifier for Android games and tools, as a proxy
for malware detection [7]. Zhou et al. found real malware in
the wild with DroidRanger, a malware detection system that
uses permissions as one input [8]. Although our techniques
are similar, our goal is to understand the difference between
high-reputation and low-reputation applications rather than
to identify malware. Applications may be of low quality or
act in undesirable ways (i.e., be risky) without being mal-
ware. Additionally, our approach only relies on permission
requests; unlike these past approaches, we do not statically
analyze applications to extract features, which makes our
technique applicable to platforms where code is not available
(such as the Facebook platform).

Enck et al. built a tool that warns users about appli-
cations that request blacklisted sets of permissions [9].
They manually selected the blacklisted patterns to represent
dangerous sets of permissions. In contrast, we advocate a
statistical whitelisting approach: we propose to warn users
about applications that do not match the permission request
patterns expressed by high-reputation applications. These
two approaches could be complementary; human review of
the found patterns could potentially improve them.

B. Facebook

The Facebook Platform supports third-party integration
with Facebook. Facebook lists applications in an “Apps and
Games” market alongside information about the applica-

tions, including the numbers of installs, the average ratings,
and the names of friends who use the same applications.
Through the Facebook Platform, applications can read users’
profile information, post to users’ news feeds, read and
send messages, control users’ advertising preferences, etc.
Access to these resources is limited by a permission system,
and developers must request the appropriate permissions
for their applications to function. Applications can request
permissions at any time, but most permission requests are
displayed during installation as a condition of installation.
Chia et al. surveyed Facebook applications and found that
their permission usage is similar to Android applications: a
small number of permissions are heavily used, and popular
applications request more permissions [4].

III. APPLICATION DATA SET

In this section, we report about how the data was col-
lected1. For a more detailed analysis of the global statistics
of the dataset that includes price and ratings distributions,
please refer to the author version of this paper [10].

1) Android.: We collected information about 188,389
Android applications from the official Android Market in
November 2011. This data set encompasses approximately
59% of the Android Market, which contained 319,161 active
applications as of October 2011 [11]. To build our data
set, we crawled and screen-scraped the web version of the
Android Market. Each application has its own description
page on the Market website, but the Market does not provide
an index of all of its applications. To find applications’
description pages, we first crawled the lists of “top free” and
“top paid” applications. These lists yielded links to 32,106
unique application pages. Next, we fed 1,000 randomly-
selected dictionary words and all possible two-letter per-
mutations (e.g., “ac”) into the Market’s search engine. The
search result listings provided us with links to an additional
156, 283 unique applications. Once we located applications’
description pages, we parsed their HTML to extract appli-
cations’ names, categories, average rating score, numbers of
ratings, numbers of downloads, prices, and permissions.

2) Facebook.: Chia et al. provided us with a set of 27,029
Facebook applications [4]. They collected these applica-
tions by crawling SocialBakers [12], a site that aggregates
statistics about Facebook applications. After following So-
cialBakers’s links to applications, they screen-scraped any
permission prompts that appeared. They also collected the
average ratings and number of ratings for each application.
One limitation of this data set is that it only includes the
permission requests that are shown to users as a condition
of installation; they did not attempt to explore the func-
tionality of the applications to collect secondary permission
requests that might occur later. As such, our analysis only
incorporates the permission requests that are shown to users
as part of the installation flow.

1The data is available at http://www.mariofrank.net/andrApps/index.html



IV. PATTERN MINING TECHNIQUE

Our goal is to infer statistically significant permission
request patterns from the set of all applications’ permission
requests. Let N be the number of applications, and let D be
the total number of possible permissions. We can then rep-
resent the dataset of applications’ permission requests as a
binary matrix x ∈ {0, 1}N×D. The entry xid = 1 means that
application i requests permission d. The row xi∗ ∈ {0, 1}D
represents all permission requests of application i.

Given this matrix as an input, we want to find the two
following binary matrices: the matrix u that encodes which
permissions are frequently requested together (the permis-
sion request patterns), and the matrix z that encodes which
applications share the same permission request patterns. Let
K be the number of patterns found, then z ∈ {0, 1}N×K

and u ∈ {0, 1}K×D.
These two matrices represent an approximate factoriza-

tion of the input matrix via the Boolean matrix product,
where the Boolean product c = a ⊗ b of two matrices
a ∈ {0, 1}N×K and b ∈ {0, 1}K×D is defined as (see [13]):
cid =

∨K
k=1 (aik ∧ bkd) .

Having introduced these concepts, we can rephrase our
goal as finding a factorization (z∗,u∗) that approximates
the permission request matrix x up to such residuals that
exhibit no statistically significant pattern, i.e., x ≈ z∗⊗u∗ .

We employ a probabilistic model for binary matrix fac-
torization [13]. This model takes a binary matrix x and
computes the likelihood that a given factorization (z,u)
represents the statistically significant patterns of x. We then
tweak the entries of (z,u) to maximize the likelihood of
x. The outcome is a factorization (z∗,u∗) that does not
necessarily provide an exact representation of x. This model
was originally derived as an approach to the role mining
problem [14], [15], where the goal is to identify roles to
configure role-based access control (RBAC) [16]. Sets of
permission requests can be equated to roles.

The likelihood function in [13] explicitly models the data
as a probabilistic mixture of signal and noise. In the context
of mining permission requests, signal corresponds to signif-
icant patterns of permission requests, and noise corresponds
to the residuals when fitting these patterns to the data. Each
permission request of each application is assumed to follow
either the signal distribution pS (xid | z,β) with probability
(1− ε), or a random Bernoulli distribution pN (xid | r) with
probability ε. The signal distribution is

pS (xid | z,β) =

[
1−

K∏
k=1

βzik
kd

]xid [ K∏
k=1

βzik
kd

]1−xid

Here, the Boolean permission requests ukd assigning per-
mission d to pattern k are modeled by the probability
that they are 0, i.e. βkd := p(ukd = 0). Assuming that
the individual entries xid are independent, the model is a

modified Bernoulli distribution B(xid|qid) with Bernoulli
parameter qid =

∏K
k=1 β

zik
kd .

The noise distribution is a Bernoulli distribution
pN (xid | r) = rxid (1− r)1−xid . This means that if an
application’s permission request xid is generated from the
noise distribution, then it is sampled from a biased coin flip
and with probability r application i requests permission d.

Finally, the complete likelihood function is a mixture of
the noise probability distribution and the signal probability
distribution:

p (x|z,β, r, ε) =
N∏
i=1

D∏
d=1

(εpN (xid|r) +(1−ε)pS(xid|z,β))

The parameters (z,β, r, ε) of this distribution can be
optimized by an annealed expectation-maximization algo-
rithm [13]. This algorithm alternates between updating the
individual parameters and, after each iteration, reducing the
computational temperature, ultimately forcing the proba-
bilistic parameters βkd ∈ [0, 1] towards 0 or 1. The algorithm
terminates when the parameter updates become negligible or
when a predefined temperature is reached.

The number of patterns K must be provided as an input
of the algorithm. There are several related heuristics for this
model-order selection problem [17], [18] and we approach it
by carrying out an instability analysis [17]. An introduction
to this method and the results of our analysis can be found in
the author version of this paper [10]. Following the results of
this analysis, we selected K = 30 patterns to fit the Android
dataset and K = 5 patterns to fit the Facebook dataset.

V. EXPERIMENTS

We mine patterns of permission requests from high-
reputation Android and Facebook applications. Section V-A
details our methodology and provides an overview of the
permission request patterns that we found. We then consider
how permission request patterns differ between high- and
low-reputation applications (Section V-B) and find that the
patterns can be used as part of a risk metric for new,
unknown applications.

A. Overview of the Permission Request Patterns

We apply the techniques described in Section IV to the
permission requests of high-reputation Android and Face-
book applications.

1) Methodology.: We train our model on high-reputation
applications, defined as applications with average ratings of
4 or higher and at least 100 user ratings. Our reputation
metric combines average ratings and the number of reviews
because the average rating by itself is an unreliable measure.
This quality criterion yields 11,554 Android applications
and 1,998 Facebook applications. For Android, we reserved
2, 000 applications to use as a test set and trained on the
remaining 9,554applications. For Facebook, we reserved 400
test applications and trained on 1,598 applications.
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(b) Pairw. Cond. Probablities

Figure 1: PRPs and pairw. cond. probabilities for Facebook.
Each column in Fig. 1a is a PRP; a black entry in the matrix
means that the permission is part of the PRP; the patterns are
sorted from left to right with decreasing popularity. Fig. 1b:
bright colors indicate a high conditional probability.

2) Results.: The Facebook dataset has a simple and clean
structure. We found five permission request patterns (PRPs)
for Facebook, which suffice to cover the requested permis-
sions of most Facebook applications. Figure 1a depicts the
five PRPs. This simple structure might be due to the fact that
the permissions requested after installation are not accounted
for in the data, as explained in Section III.

The Android dataset is more complex: our mining tech-
nique identified 30 PRPs for Android. The most common
PRPs for Android are shown in Figure 2. Figures 1a and
2 are the (transposed) matrices u∗ that assign permission
patterns to permissions. We sorted the patterns by frequency
such that PRP1 is the most common pattern, PRP2 is the
second most-requested pattern, etc.

PRPs are not disjoint: permissions can be members of
multiple patterns, and applications can request multiple pat-
terns. Consequently, most patterns only include a small num-
ber of permissions. A PRP with only one permission reflects
the fact that the permission is requested very frequently, but
not always together with the same other permissions.

permission request pattern
5 10 15 20

Storage : modify/delete USB storage and SD card contents
Network communication : full Internet access
Network communication : view network state
System tools : prevent device from sleeping
Phone calls : read phone state and identity

Hardware controls : control vibrator
System tools : automatically start at boot

Network communication : view Wi−Fi state
Your location : fine (GPS) location

Your location : coarse (network−based) location
System tools : retrieve running applications

Your personal information : read contact data
Your messages : read SMS or MMS

Your messages : receive SMS
Hardware controls : take pictures and videos

Hardware controls : record audio
System tools : modify global system settings

Figure 2: The permissions included in the 20 most popular
Android permission request patterns (PRPs). The fraction of
applications requesting the PRP decreases from left to right.

In order to explain why particular permissions appear in
the same pattern, we can consider the pairwise conditional
probabilities. For two permissions s and t, the conditional
probability is empirically estimated as

pst := p(xs = 1|xt = 1) =

(
N∑
i=1

xit

)−1 N∑
i=1

xisxit
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Figure 3: Pairwise conditional probabilities for the Android
permissions from the 20 most popular patterns.

If pst = 1, then s is requested whenever t is requested. This
score is not symmetric, i.e., pst = pts is not necessarily
true. We plot these scores for Android and Facebook in
the heatmaps in Figure 1b and Figure 3, respectively. The
brighter the color, the higher the conditional probability. It
is apparent that pairs of permissions with a high conditional
probability often end up in the same pattern. We found
that clusters of permissions with a high pairwise conditional
probabilities cannot emerge by chance [10].

3) Evaluation.: We evaluate how well the permission
request patterns generalize and fit the data by considering the
false positive and false negative rates. Ideally, the patterns
should yield low false positive and false negative rates for
both the training sets and the test sets. A false positive occurs
when an application is assigned to a PRP without having
all of the permissions associated with the PRP, and a false
negative occurs when an application’s permission requests
are not covered by any of the PRPs that the application is
assigned to. Consequently, we define the false positive rate
fp as the average number of permissions that are incorrectly
assigned to applications, and the false negative rate fn as the
average number of permissions per application that are not
covered by PRPs. We depict the cumulative false positive
and false negative rates in Figures 4 and 5. (Please note that
we cut off the y-axis at different values to best resolve the
dynamic range for each experiment.) Our evaluation focuses
on the error rates for the training set and high-reputation test
set in Figures 4 and 5; we discuss the error rates for the low-
reputation test set in Section V-B.

Among the Facebook applications, 2% of high-reputation
applications have at least one false positive (fp>0), and just
under 20% of all high-reputation applications have false neg-
atives (fn>0). Thereby, the residuals are very small: there
are almost no applications with more than one false positive
(fp > 1) and only 7% with more than one false negative
(fn>1). The error rates are higher for Android applications,
which reflects the greater complexity of the Android dataset.
Approximately 20% of high-reputation applications have at
least one false positive, and 35% have false negatives. For
both platforms, the false negative rate is significantly higher
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Figure 4: Fraction of Facebook applications with a particular error rate.
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Figure 5: Fraction of Android applications with a particular error rate.

than the false positive rate. The false negative rate can be
partially attributed to the very large number of infrequently-
requested permissions; these unpopular permissions cannot
be placed in PRPs, so the applications that request them
cannot be fully fitted with PRPs.

For both platforms, the error rate for the high-reputation
test set closely matches the error rate for the high-reputation
training set. This demonstrates that we have likely discov-
ered the true statistical structure of the permission requests
for high-reputation applications.

B. Reputation and Risk

Our goal is to determine whether permission request
patterns can help identify low-quality applications that
users should be cautious about installing. We trained on
high-reputation applications with the assumption that high-
reputation applications are trustworthy, high-quality appli-
cations. If this is true, PRPs could be incorporated into a
risk metric for new applications: new applications could
be considered riskier or lower-quality if their permission
requests cannot be fitted to high-reputation PRPs.

We can evaluate the suitability of PRPs for a risk metric
by comparing the false positive and false negative rates
for the high-reputation training set, the high-reputation test
set, and a low-reputation test set that includes applications
with fewer than 10 user ratings (regardless of the score).
Figures 4 and 5 display all three datasets. We find that

low-reputation applications significantly differ from high-
reputation applications in how they request permissions, as
evidenced by the false positive and negative rates. While
the reputable test applications have an error rate that is
close to the training error, the unpopular applications have
significantly higher residuals, both false positives and false
negatives. This does not indicate that the low-reputation
applications are fraudulent, but it does suggest that permis-
sion requests can be used to help classify an application as
high- or low-reputation. Consequently, we recommend that
permission request patterns be used as part of a risk metric
for newly-uploaded applications. For example, this could be
incorporated into a search result ranking algorithm.

VI. DISCUSSION

How could this information be conveyed to users?
Applications that do not fit high-reputation PRPs could be
ranked lower in search results, unless they receive enough
favorable reviews to override the risk metric. Another possi-
bility is to alter the permission request UI so that permissions
that deviate from PRPs are highlighted, so that the user’s
attention is focused on the “unusual” permission requests.
This would help provide the user with a relative notion of
risk. However, such a design would need to be subject to
user research.

Is this technique suitable for detecting malware? We
do not aim to provide a malware detector. Applications



may be untrustworthy, low-quality, buggy, or otherwise
risky without being malware. We found that applications
that receive favorable reviews from large numbers of users
request permissions differently than applications with few
ratings. Consequently, we designed our approach to iden-
tify user satisfaction rather than application maliciousness.
However, recently Peng et al. have successfully turned a
similar model-based approach into a binary classifier by
simply thresholding their risk metric [19]. While our risk
metric is the generalization error of predicted permissions of
new applications, they use the negative log-likelihood of the
requested permissions given the learned model parameters.

How indicative for the quality of apps are permissions?
The difference between high-reputation and low-reputation
applications is significant, which we attribute to a differ-
ence in application quality. However, other factors could
at least partially influence the results. The low-reputation
applications could be newer applications, and permission
request patterns might change over time. This could be ac-
counted for by computing PRPs for chronologically-similar
applications. Some of the low-reputation applications might
become high-reputation applications in the future; if they
were excluded, the difference between the two sets might be
more pronounced. Additionally, low-reputation applications
might be highly specialized, leading both to exceptional
permission requests and few interested users. However, we
believe that a real difference in applications is the most likely
and predominant reason for the disparity in ratings.

VII. CONCLUSION

We used a probabilistic model to mine permission request
patterns from Android and Facebook applications. For both
platforms, we found a set of patterns that fits well to the data.
We found that the permission requests of low-reputation
applications differ from the permission request patterns of
high-reputation applications. This indicates that permission
request patterns can be used as part of a risk metric or soft
prediction of the quality of new applications. For Android,
we find that there is a relationship between permission
request patterns and categories. In future work, we will
extend the analysis with application categories in order to
achieve greater precision.
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