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ABSTRACT
Today’s mobile devices are packed with sensors that are ca-
pable of gathering rich contextual information, such as lo-
cation, wireless device signatures, ambient noise, and pho-
tographs. This paper exhorts the security community to
re-design authentication mechanisms for users on mobile
devices. Instead of relying on one simplistic, worst-case
threat model, we should use contextual information to de-
velop more nuanced models that assess the risk level of the
user’s current environment. This would allow us to decrease
or eliminate the level of user interaction required to authen-
ticate in some situations, improving usability without any
effective impact on security. Ideally, authentication mech-
anisms will scale up or down to match users’ own mental
threat models of their environments. We sketch out several
scenarios demonstrating how contextual information can be
used to assess risks and adapt authentication mechanisms.
This is a research-rich area, and we outline future research
directions for developing and evaluating dynamic security
mechanisms using contextual information.

Categories and Subject Descriptors
H.1 [Models and Principles]: User/Machine Systems

General Terms
Human Factors, Security
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1. INTRODUCTION
Chances are that you carry a smartphone. Smartphones

now account for half of all mobile phones in the U.S. [21].
Among U.S. users aged 25–34, smartphones account for al-
most two-thirds of mobile phones [20]. Smartphones are so
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useful that one-quarter of users say that they mainly use
their smartphone to go online [16].

The unique property and usage pattern make mobile de-
vices subject to specific threats that are different from desk-
top machines.

First, mobile devices often store and access many types
of sensitive data and services, including personal photos,
email, text messages, GPS traces, social media feeds, bank
accounts, and corporate infrastructure. Always-on access to
services makes it easy for attackers to leverage one account
to gain access to another; for example, an attacker that gains
physical possession of a device can request a password re-
set for one service, which sends a reset message to an email
account on the device. Second, users carry and use mobile
devices everywhere. These small devices are easily lost, for-
gotten, or stolen. In many major U.S. cities, over 40% of
users have lost their cell phones or been victims of cell phone
theft [10].

However, industry surveys estimate that between 38% and
70% of smartphone users do not even lock their phones with
passwords or PINs [13, 11, 17]. Why do users prefer in-
secure access on devices that are both sensitive and prone
to theft? One explanation is that entering passwords and
PINs on virtual keyboards is time-consuming, cumbersome,
and error-prone. Another explanation is that users do not
believe that extra passwords or PINs are needed.

Users’ reluctance to use authentication on their devices
may be rational. Herley points out that user effort is not
free, and users may be estimating their risks better than
security professionals. In fact, ignoring today’s security ad-
vice may be perfectly reasonable in light of the actual harm
wrought by weak passwords [6]. Wimberly and Liebrock
show that users implicitly assess their level of risk and ad-
just their actions accordingly [22]. Both studies suggest that
users intuitively create their own subjective threat models.
For example, someone who keeps his phone on his person
at all times could rationally decide that a screenlock is gen-
erally unnecessary. However, he may also recognize that in
some situations he would prefer to have stronger authenti-
cation. Modern authentication mechanisms do not support
dynamic scaling of security, so users may default to the sim-
pler option.

Below, we highlight three major shifts in technology that
should change the way we think about mobile device secu-
rity: mobility, sensors, and constant connectivity.
Mobility. Mobility creates uncertainty about the environ-
mental conditions surrounding a mobile device. Devices may



be used in secure environments, such as homes or offices, or
in public spaces, such as airports and coffee shops. The vari-
ety of environments exposes mobile devices to a large pool of
potential attackers: everyone from friends and family mem-
bers to total strangers. Traditionally, security mechanisms
have been designed to resist attacks in a one-size-fits-all,
worst case scenario. Unfortunately, strong passwords and
their equivalents impair the usability of mobile devices and
apps. Users need a flexible solution that adapts to their
current situation.
Sensors. Today’s mobile devices are equipped with a va-
riety of sensors, including GPS, accelerometers, gyroscopes,
magnetometers, proximity sensors, microphones, cameras,
and radio (cellular, Bluetooth, Wi-Fi, RFID, NFC) anten-
nas. These sensors fueled an explosion of new applications
tailored for mobile devices.

Researchers are exploring the application of sensor data to
security. Greenstadt and Beal advocate fusing multiple low-
fidelity streams of sensor data to perform biometric recogni-
tion and to track user presence [3]. Jakobsson et al. implic-
itly authenticate users by comparing users’ recent behavior
to personalized models of past behaviors [7]. Smartphone
accelerometers have been used for biometric gait authenti-
cation [2] and GPS for location-based authentication [19].

Most existing research focuses on user authentication, but
sensor data is useful for more than binary authentication de-
cisions. Contextual cues can be used to scale the security
behavior of devices and applications. For example, Gupta
et al. dynamically adapt the locking timeout and unlock
mechanism for smartphone screenlocks based on location fa-
miliarity [4]. In concurrent, independent research with this
paper, Qin et al. propose a progressive authentication sys-
tem that combines multiple sensor signals to determine the
confidence level in a user’s authentication. The system uses
this confidence level to decide when to request authentica-
tion and for which applications, thus reducing the number
of times a user has to authenticate [12].
Constant connectivity. Mobile devices have constant ac-
cess to the Internet and other devices. Constant connectiv-
ity allows devices to offload some security-relevant compu-
tations to remote servers or other machines. Aggregating
sensor data across devices also enables the development of
fine-grained contextual models [15, 9].

2. SENSING THE OPPORTUNITY
The accepted way to design a security system is to create

a threat model and formulate a solution that addresses the
prioritized threats in the model. Swiderski and Snyder out-
line a methodical process in their book [18]. Similarly, Gut-
mann proposes using problem-structuring methods (PSMs)
to consider the social, environmental, and political aspects
of computer security challenges [5].

However, intangible and physical world factors are diffi-
cult to model. As a result, a large body of academic work
sidesteps the issue and often assumes the worst case. The
usability of security suffers as a result, particularly on mobile
devices.

Sensors enable us to gather information about the con-
text surrounding mobile device use. With contextual in-
formation, we can form situation-dependent threat models.
Transitioning from one static threat model to many contex-
tual threat models allows us to dynamically adapt security
mechanisms to the situation. Devices and apps could re-

move or reduce explicit authentication mechanisms in safer
environments and increase them in riskier situations. The
goal of such a dynamic authentication system is to improve
usability with little effective reduction of security for mobile
devices.

Since we are concerned with physical authentication mech-
anisms, threats related to malware, worms, phishing, and
social engineering attacks are out-of-scope.

3. USING CONTEXT INFORMATION
Below, we illustrate how context information may be used

to subtly alter authentication mechanisms in high and low
risk environments. The scenarios are described at a high
level; Section 4 discusses the technologies that can support
these interactions.

3.1 High Risk Scenario
Alice is waiting for her flight. She pulls out her smart-

phone to pay a bill that is due during her trip. She enters
her PIN to unlock her phone.

She then opens her mobile banking app, which takes her
photo and asks her to enter her bank password. After login,
the app displays a limited interface that allows her to check
her balance, pay bills to existing payees, and find nearby
banks and ATMs. Because the airport is a high risk en-
vironment, some transactions are disabled and a photo is
required.

With time before her flight, Alice browses the stores in
the terminal. She decides to buy an expensive gift using
her e-wallet app. The app shows her the total and prompts
her to enter her PIN. As an additional security measure,
the app takes her photo, and the cashier’s terminal displays
Alice’s profile photo from the e-wallet provider. The cashier
acknowledges that the Alice standing in front of him is the
same person as the Alice in the picture.

After boarding the plane, Alice uses her Amazon app to
purchase an item that she forgot to pack. Alice enters her
password and re-enters her credit card verification code be-
fore adding her hotel’s address for shipping and completing
the purchase.

3.2 Low Risk Scenario
Bob is shopping in his favorite clothing store. He pulls his

smartphone out. As he moves the phone towards his face, it
recognizes him and unlocks the screen.

Bob opens his mobile shopping app and uses it to take a
picture of a barcode on a jacket that caught his eye. The
app informs him that the same jacket is available online in
a variety of colors for less. He selects the color and size
he wants and purchases it using his default credit card and
shipping address. The store is a common destination for
him, so Bob’s password is not required to check out. Instead,
he answers a multiple choice question about his last purchase
at the store; answering the question is a breeze compared to
entering his password.

Before leaving the store, he notices a scarf that he would
like to wear that evening. He brings the scarf to the counter
and moves his phone towards the payment point. His phone
displays the total amount, and he clicks the “Purchase” but-
ton to complete the transaction. Bob’s PIN is not required
because the relatively low amount is transferred to a known
store.



At home, Bob pulls out his tablet, which automatically
recognizes him and unlocks the screen. He opens his mobile
banking app and selects “Add a New Payee.” The app takes
his photo and compares the photo and his location to his
existing profile. A moment later, Bob is able to add his
cable provider to his list of payees without entering his long
bank password.

4. APPLICATIONS OF CONTEXT
In the previous section, we described how device context

enables the dynamic scaling of security requirements. Below,
we examine the four examples in more depth.

4.1 Device Unlock
Screenlocks are a ubiquitous feature on every PC, tablet,

and smartphone in the market today. A screenlock hides
what the user was last viewing and prevents the device
from responding to input. It activates after a predetermined
amount of idle time, or when a user engages it.

We assume that a user needs to gain physical access to un-
lock a mobile device. After unlocking, she can immediately
access some information, such as personal contacts, calen-
dar, emails, and text messages, and some functionality, such
as making phone calls and sending email. However, she may
not have access to critical applications that are protected by
additional layers of security, such as password input.

On smartphones, screenlocks are often deactivated using
numeric PINs, secret gestures, or dots that need to be con-
nected into a pattern. Contextual information can be lever-
aged to adapt unlock mechanisms for the user’s current situ-
ation, scaling authentication requirements between high risk
and low risk scenarios.
High risk. In Section 3.1, when the accelerometer detects
that Alice is moving the phone towards her face 1, the cam-
era captures a series of images and performs facial recogni-
tion to determine whether she is the authorized user on this
device. At the same time, the Wi-Fi radio checks to see if it
recognizes any nearby wireless access points, and the Blue-
tooth radio checks to see if it recognizes any nearby devices.
Visible Wi-Fi networks and Bluetooth beacons can be used
to determine the user’s location, map the location to public
spaces or the user’s personal points of interest, and assess
the level of foot traffic in the vicinity. Microphone informa-
tion can also be used to identify crowded public spaces.

Public, crowded, or unknown spaces may be classified as
risky. In risky situations, Alice’s smartphone authenticates
her with both her PIN and a biometric identifier. Identifiers
could include her face, patterns of movement, or the manner
in which she interacts with the screen. In this scenario, the
smartphone performs face recognition automatically using
the front-facing camera, without explicit action from Alice.
Low risk. If Bob is in a known and familiar location,
or Bob’s mobile device has tracked his constant presence
(through cameras and other sensors) since entering a PIN,
it unlocks by simply recognizing Bob’s face when he makes a
motion of intent. If someone else attempts to unlock Bob’s
device, the front-facing camera takes a photo and alerts Bob
the next time he picks up the device.

1We consider Alice moving the phone towards her face to be
a motion of intent. Discriminating motions of intent from
incidental motions should be a straightforward classification
task.

Discussion. The numeric PIN commonly used today on
smartphones is the worst of both worlds: too weak to resist
attackers when the user loses control of the device, and too
strong for convenient use in daily routines.

For many mobile device users, a combination of facial
recognition, presence tracking, and an audit trail of unlock
photos will restrain acquaintances. Scaling down unlock to
forgo PIN entry can still provide sufficient protection against
data exposure or device tampering while increasing ease of
use.

In contrast, high risk spaces require more assurances. Com-
bining a PIN with face recognition or another biometric
identification increases the level of security.

4.2 Mobile Shopping Application
For consumers accustomed to comparing prices and perus-

ing online reviews, shopping on mobile devices is a natural
extension. Anecdotally, mobile online shoppers fall into one
or more of the following categories.

• Users adopting mobile devices as PC replacements at home
or in the office. These users gravitate towards the native
apps (e.g., Amazon or Zappos) to read reviews and pur-
chase items.

• Users comparing the online price of an in-store item.
• Users using online reviews to make a purchasing decision

at the store.
• Users completing “errands” on the mobile device while on

the go.

With such a wide array of uses, mobile shopping applica-
tions could easily benefit from contextual information. Be-
low, we assume that any shopping application will ask users
to authorize purchases with their login passwords or context-
supported mechanisms.
High risk. A high risk shopping transaction is character-
ized by novelty: a new shipping address, an usually expen-
sive purchase, or a new location. Making purchases in a new
location or sending purchases to a new address could be an
indicator of device theft, so the app requires stronger au-
thentication. Defaulting to the established checkout proce-
dure for web applications, such as entering an alphanumeric
password and credit card verification code, makes sense to
both Alice and the online shop.
Low risk. As Bob peruses his favorite local shop, the mo-
bile application tries to match his current location with his
location history of previous transactions, or with his exist-
ing shipping or billing addresses. The app also performs
face recognition using images from the front-facing camera.
These activities can take place in the background, establish-
ing a high probability that the shopper is indeed Bob.

In addition to probabilistically identifying Bob, the app
considers his purchase data; for example, the item is shipped
to Bob’s existing shipping address, is below a price thresh-
old, and fits his purchase history profile. This combina-
tion of factors categorizes the purchase as low risk. For
low risk transactions, the app could ask a simple multiple-
choice question based on Bob’s purchase history, such as,
“Last month, did you buy the (a) Hunger Games Trilogy, (b)
Kindle Fire, or (c) Panasonic DMC-FH25K 16.1MP Digital
Camera?”
Discussion. Using context data, the online store stream-
lines its purchase flow—requiring only one touch instead of
a long alphanumeric password—without risking a significant
increase in fraudulent activity.



4.3 E-Wallet
In many parts of the world, merchants and individuals are

using and accepting mobile phones to exchange currency. In
particular, phones can be used:

• As a debit card or credit card. A service such as Google
Wallet enables customers to transfer money to their Google
Wallet accounts or to associate credit cards with their ac-
counts. The user can then pay at supporting merchants.

• As a mobile bank account. Service providers such as M-
PESA [14] and Celpay [1] enable users to deposit money
into their accounts and transfer money out.

This turns mobile phones into sophisticated wallets and,
similar to old-fashioned wallets, attractive targets for fraud.
Google Wallet requires that the user, in addition to unlock-
ing the phone, enter a dedicated PIN and tap the phone on
a reader to enable reading the payment information from a
dedicated chip in the phone. Similarly, money transfer ser-
vices require a password to carry out transactions. Cashing
money from a mobile bank account requires a valid ID that
is checked at the service point.
High risk. High risk transactions may involve large amounts
of money, historically anomalous purchases, or money trans-
fers to new recipients. In high risk situations, the mobile de-
vice can take a picture during a credit/debit transaction and
compare it with a photo taken during account enrollment.
This implements an additional verification step that is com-
pletely transparent to the user. Alternatively, if a camera is
unavailable on the mobile device or the photo is unusable, a
human comparison is effective. The remote server can send
Alice’s photo to the other party in the transaction and ask
the other party to confirm her identity.

As e-wallet users tend to send money to the same receivers—
most transactions are directed home to family members—
the service provider can establish a social network in which
nodes are connected whenever money is sent between them.
If Alice sends money to an unknown receiver, the device
could request that the receiver take a picture of his face,
which the system sends back to Alice.
Low risk. Reducing security requirements for low risk
transactions requires a strict set of security policies. For ex-
ample, when Bob attempts to make a purchase at a payment
point, the system queries a server to determine the level of
authentication required for the account holder at that par-
ticular payment point. If Bob has made a number of pur-
chases at that location, has logged into his phone recently,
was matched to his profile photo in the background, and his
current purchase is less than a predetermined threshold, a
lower level of authentication is required. Bob can complete
his purchase without his PIN.
Discussion. Careful risk modeling using the contextual
data provided by mobile devices can allow e-wallet providers
to improve the usability of their service, which may increase
adoption. Since e-wallet technology often relies on trusted
hardware to store keying material, cryptographic protocols
will need to be developed that allow re-keying using contex-
tual data. This may include using an identifier stored in the
merchant’s e-wallet reader, for example.

4.4 Mobile Banking
In Sections 3.1 and 3.2, the banking app on Alice’s phone

and Bob’s tablet performs the same contextual queries. The
app uses location cues from the mobile device, such as GPS,

Wi-Fi networks, and Bluetooth devices, to determine if Al-
ice and Bob are in familiar locations, such as known home
addresses.
High risk. While Alice is in an airport, the app categorizes
her environment as high risk and prompts her for both her
banking password and a photo. Even with two-factor au-
thentication, the app restricts what activities are available
to Alice and how long she has to interact with the app be-
fore she has to reauthenticate. After all, Alice’s phone could
be stolen before its screenlock engages or Alice locks the de-
vice. If Alice wants to perform more sensitive operations,
such as adding a new payee, she will need to move to a safer
environment.
Low risk. The mobile banking app on Bob’s tablet has
high security requirements. The app will not query a re-
mote location API to determine Bob’s location and fetch
a history of recent authentication attempts like the mobile
shopping app. Instead, the bank app only uses the context
information that is available directly from the device sen-
sors. It reports Bob’s approximate location and details of
the Wi-Fi and Bluetooth environment to the bank’s servers
over a secure channel. The server incorporates that infor-
mation into its risk profile. When Bob selects “Add a New
Payee”, the app explicitly photographs his face and informs
him the photograph will be uploaded to the bank’s servers
as part of the transaction record. In addition to acting as
a biometric authentication, the photograph reduces the risk
of friendly fraud [8] and reassures Bob that the bank takes
his security seriously.

Since the location matches his home address and the photo
matches Bob’s face, many banking actions are available with-
out entering a password. However, a password or a se-
cret spoken passphrase is still necessary to perform sensitive
transactions, such as unusual or large money transfers.
Discussion. In general, all available contextual information
could be sent to the bank during mobile banking transac-
tions. This is feasible as mobile banking requires a network
connection to be useful. Consequently, the device is able
to offload the security computations to the bank’s servers.
That data can be fed into the bank’s risk analysis engine,
allowing the bank to have much more sophisticated models.
This improved modeling also benefits the user, since she is
less likely to be victimized. However, she may have valid
privacy concerns about sharing such data with the bank.

5. PRIVACY
In our context-aware authentication paradigm, multiple

sensors collect multifaceted data about the device, user, and
environment. This data collection may concern some users.
Careful system design can assuage most of these concerns.
Device unlock. For device unlock, all of the collected data
is processed on the phone, and much of the data is tran-
sient. In the absence of malware, the only privacy concerns
are due to physical compromise of the device. The device
can encrypt sensitive data when it is stored. In order to use
that data during the unlock procedure, the decryption key
would need to be stored in memory. If the key can be gen-
erated from the user’s normal passphrase, it can be deleted
during any unlock procedure where the device thinks a new
authentication is necessary.

The system can offer this authentication-secured storage
as a service to other applications as well, so that any applica-
tion with sensitive data, such as the applications we discuss



in this paper, can tie access to that data to the authenticated
user. In this way, the user’s privacy can be maintained under
the threat of physical compromise.
Mobile shopping. The mobile shopping app can use ser-
vices provided by the phone for all of its contextual au-
thentication queries. For example, face recognition can be
provided as a service, and does not require direct access to
the camera, or even that the shopping app have a previous
photo of the user. It only requires that the user registered
with the device at some point, pairing the user’s face with
some internal identifier known to the shopping app and the
device. Since the app does not have access to the user’s
photo, location, or other contextual data, it cannot compro-
mise the user’s privacy to the online store.
E-wallet. E-wallet transactions are similar to existing credit
card transactions. They are sensitive and informative, and
they require a set of central authorities to approve the trans-
action. These features mean that the e-wallet must expose
more user data to third parties. However, the third-parties
in question already collect much of the contextual informa-
tion we propose using. For example, if a user were to pur-
chase something with a credit card, the credit card com-
pany would immediately know the amount of the purchase,
the location of the purchase, and the business name of the
merchant. The only new set of data in use is the user’s
photo. Sending the photo to the merchant does not violate
the user’s privacy, since she is present with the merchant.
Sending the photo to the e-wallet provider may be more
sensitive. This topic deserves further user study.
Mobile banking. As with the e-wallet case, banks already
collect much of the contextual data in question during tra-
ditional interactions, such as at an ATM or at home on a
computer. Banks can mitigate privacy concerns by market-
ing the use of contextual data as a service to increase user’s
security. Of course, marketing is not sufficient to prove that
the user’s privacy has not been violated. Careful regulation
of banks’ privacy policies and data usage can mitigate the
risk of abuse.

6. FUTURE RESEARCH AGENDA
Moving forward, a diverse mix of research topics need to

be addressed for contextual threat modeling and the adap-
tation of security mechanisms to be successful. We highlight
a few below.
Understand how mobile device users construct a men-
tal threat model in a variety of contexts. Mobile de-
vice users will adopt contextual security mechanisms if they
match users’ expectations. The security community needs
to understand users’ own mental threat models through a
mix of lab experiments and ethnographic study. For exam-
ple, how do users’ perceived threats change as they move
from a trusted private space to a public space? Do users
believe that unlock mechanisms or application-specific pass-
words are always necessary in private spaces?
Incorporate physical world factors into contextual
threat models. We need methods for interpreting sensor
data to create contextual threat models on mobile devices.
Research is already moving in this direction [4] using loca-
tion, but how else can the sensor data be used? New sensors,
or new uses of existing sensors, may need to be developed.
For example, an approach based on ultrasound sensors and
machine learning techniques can be developed for detect-

ing and differentiating humans within a small radius, which
would enable a mobile device to model human traffic.

Also, context information can enable researchers to in-
clude physical security in system or application threat mod-
els. For example, if we can assess how a secure location
reduces risk, we might consider a secure location and weak
password equivalent to a strong password.
Study the usability of adaptive security mechanisms.
One danger of dynamically adapting security mechanisms is
that users may become confused. User studies will deter-
mine whether users accept different levels of security. Is
inconsistency confusing to end users? Do problems arise
because the system’s behavior fails to match users’ men-
tal models, or because consistency—even if it entails more
work for the user—lowers cognitive burden and is more ac-
ceptable?
Address privacy concerns. The collection and dissemi-
nation of sensor data raises serious privacy issues. Exposure
may result from taking physical possession of the device,
malware that steals information stored locally on the device,
or organizations that gather and store sensitive, personally
identifiable data. Researchers should carefully consider how
to minimize data collection and aggregate any data that is
stored.
Optimize implementation for real-world use. To facil-
itate adoption, adaptive security mechanisms must respond
quickly to user interactions and minimally impact system re-
sources. Environment sensing and context model construc-
tion, especially those involving sophisticated pattern recog-
nition on high-data rate sensors such as a camera, or just
using GPS, consume significant energy and can be slow. Mo-
bile device users do not tolerate large reductions in battery
life or delays in logging in. Selecting which sensors to collect
data from and deciding where to do the context analysis (on-
device vs. remote servers) to minimize energy consumption
and latency while satisfying fidelity requirements are chal-
lenging research problems.
Develop methods for evaluating the quality of con-
textual threat models and adaptive security mecha-
nisms. Like every research problem, an evaluation metric
is necessary. How can a system judge the applicability of a
contextual threat model to a person in a particular location
at a given time? How do we assess whether a system scaled
the security mechanisms appropriately for the environment?
Answering these questions may require a mix of user studies
and machine learning to incorporate user feedback.
Develop cryptographic protocols to support dynamic
keying. Some current e-wallet apps use a Trusted Platform
Module to store keys that decrypt data needed to complete
a transaction. The keys themselves are encrypted using the
user’s PIN. In order to support purchases that do not require
the PIN, we will need new protocols that allow the user to
generate new keying material based off of contextual cues.
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