On the Definition of Role Mining

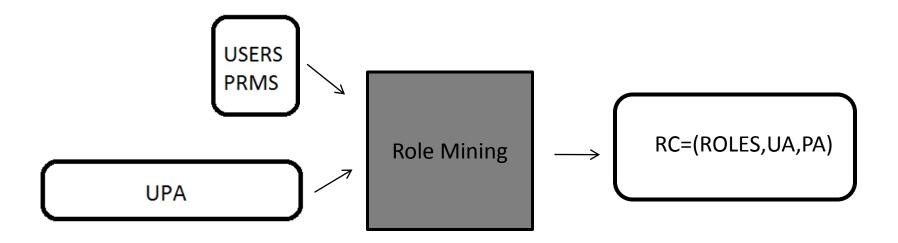
Mario Frank, Joachim M. Buhmann, David Basin

15th ACM Symposium on Access Control Models and Technologies

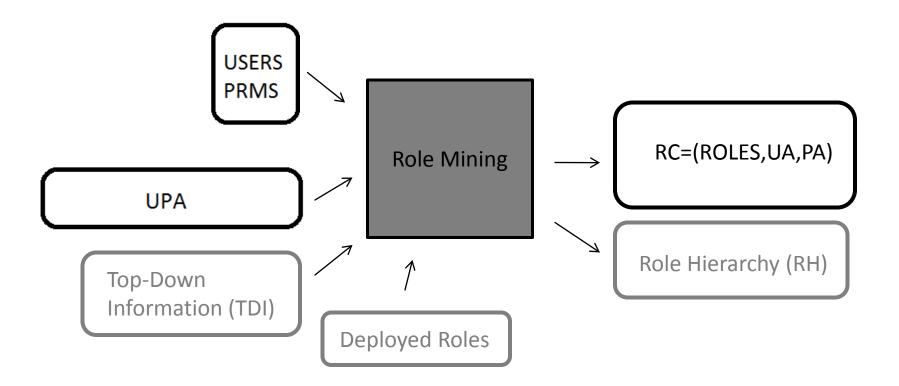
link to the paper

presented by: Mario Frank

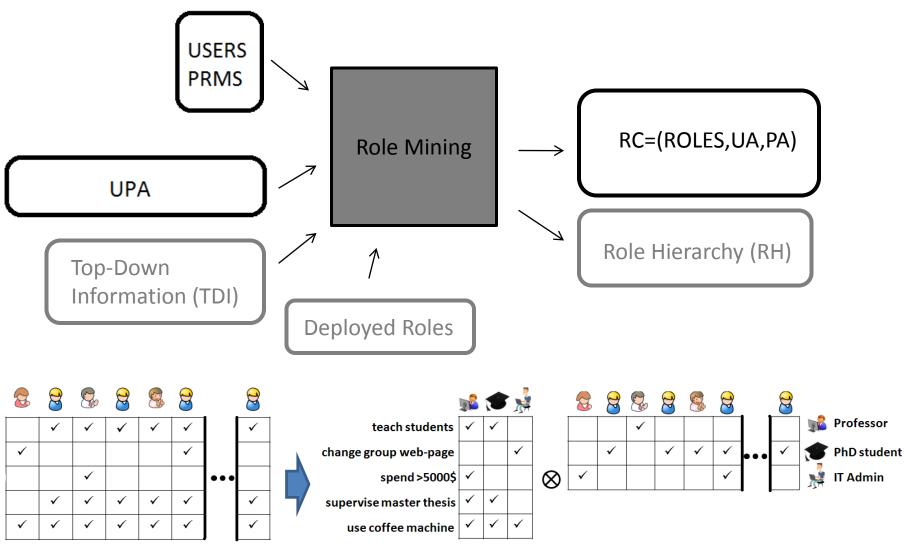
What is role mining? How should this problem be defined?


Also:

- How should it be solved?
- How should solutions be evaluated?


Strategy:

- Start with clear parts such as input/output.
- Look at basic requirements for RBAC.
- Define problem such that solutions meet requirements.


Input / Output

Input / Output

Input / Output

Direct user-permission assignment

role-permission assignment

user-role assignment

What is required from an RBAC configuration?

Candidates:

- **Perfect** match with original assignment UPA (``0-consistency'')
- Best possible match with UPA.
- The ``smaller" the configuration the better (best compression).
 - Number of roles
 - Number of assignments
 - Number of exceptions
 - Linear combination of size measures
- No transfer of errors from UPA to RBAC (violates perfect match)

Hard to decide which ones to take since all very technical. Our understanding of the requirements are more high-level.

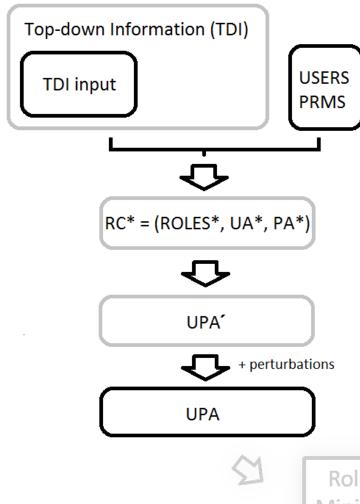
What is required from an RBAC configuration?

Most important requirements from an enterprises perspective:

• Provisioning

Users are enabled to carry out their tasks.

Security


Configuration conforms to the enterprise security policies.

Maintainability

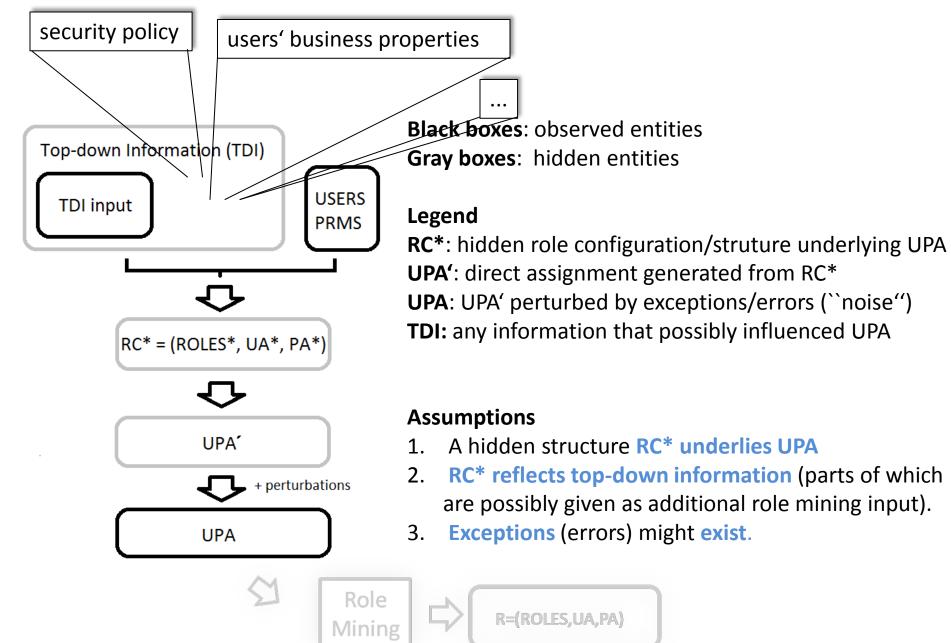
Administration of the system is as easy as possible:

- understandable roles
- easy to add users (roles generalize well)

What do we actually get as an input?

Black boxes: observed entities Gray boxes: hidden entities

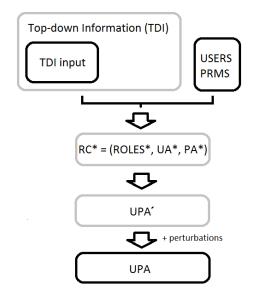
Legend


RC*: hidden role configuration/struture underlying UPA
UPA': direct assignment generated from RC*
UPA: UPA' perturbed by exceptions/errors (``noise'')
TDI: any information that possibly influenced UPA

Assumptions

- 1. A hidden structure RC* underlies UPA
- 2. **RC* reflects top-down information** (parts of which are possibly given as additional role mining input).
- 3. Exceptions (errors) might exist.

What do we actually get as an input?


Definition

Definition INFERENCE RMP:

Let a set of users USERS, a set of permissions PRMS, a user-permission relation UPA, and, optionally, part of the top-down information TDI be given. Under Assumption 1-3, infer the unknown RBAC configuration RC*=(ROLES*, UA*, PA*).

Assumptions (from last slide):

- 1. Structure R* is hidden in UPA
- 2. R* reflects top-down information (TDI).
- 3. Exceptions (errors) might exist.

Why is this a good definition?

Rationale:

The solution fulfills the real-world requirements.

- Input data UPA is generated from underlying RC* (modulo exceptions)
- RC* reflects security policies and business properties of the enterprise
- \Rightarrow RC* is configuration that
 - fulfills provisioning requirement
 - conforms to the enterprises security policies
 - is intuitive

Solving the problem and assessing solutions

Pointer to some ways of solving and evaluating that problem.

Solving:

- Difficult!
- Use your own method of choice to attack this problem.
- E.g., we used a probabilistic approach [1,2,3]: RC* is the most probable configuration under an appropriate model ⇒ RM as a modeling problem

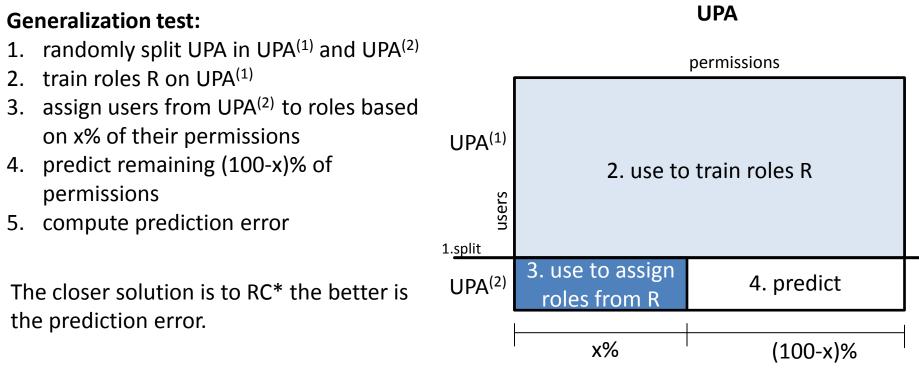
A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. <u>Multi-assignment clustering for Boolean data</u>. ICML '09
 M. Frank, A. P. Streich, D. Basin, and J. M. Buhmann. <u>A probabilistic approach to hybrid role mining</u>. CCS '09
 M. Frank, D. Basin, and J. M. Buhmann. <u>A class of probabilistic models for role engineering</u>. In CCS '08

Solving the problem and assessing solutions

Assessing:

- easy when RC* is known (artificially created data UPA)
 - avoid repeated comparison! Can give very good scores to trivial solutions.

• find the **global** permutation of roles that minimizes the deviation (can be found via Hungarian method).


 $\begin{array}{ll} \text{inferred roles} & \text{true roles} \\ \mathsf{r}_1 = \{\mathsf{p}_1, \, \mathsf{p}_4, \, \mathsf{p}_8\} & \longleftrightarrow & \mathsf{r^*}_1 = \{\mathsf{p}_1, \, \mathsf{p}_4, \, \mathsf{p}_8\} \\ \mathsf{r}_2 = \{\mathsf{p}_4, \, \mathsf{p}_7\} & \longleftrightarrow & \mathsf{r^*}_2 = \{\mathsf{p}_1, \, \mathsf{p}_2\} \end{array}$

method is demonstrated in [1]

[1] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. Multi-assignment clustering for Boolean data. ICML '09

Unknown RC*: Generalization Test

It is still possible to evaluate solutions! Exploit that undelying structure RC* reproduces over the users, whereas the noise does not.

See [1] for such an evaluation.

[1] A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. Multi-assignment clustering for Boolean data. ICML '09

Unknown RC*: Generalization Test with TDI

When top-down information is available it should be included in the assessment of the found RBAC states.

See [2] for such an evaluation.

A. P. Streich, M. Frank, D. Basin, and J. M. Buhmann. <u>Multi-assignment clustering for Boolean data</u>. ICML '09
 M. Frank, A. P. Streich, D. Basin, and J. M. Buhmann. <u>A probabilistic approach to hybrid role mining</u>. CCS '09

Summary

We have presented:

- Novel definition of the role mining problem
 - motivated from basic requirements on RBAC and
 - relying on realistic assumptions on the input data
- Pointer to high-level solution strategy
- Evaluation techniques exist

Appeal to the community:

- Papers on role mining methods should contain problem definition and evaluation criteria.
- Definition, algorithm and evaluation should agree.
- Let's try to agree on one definition of the problem (discuss!).

Thank You