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Overview 

 Motivation of information theory for optimization

 Approximation capacity of a cost function

 Examples
 Binary symmetric channel
 Cluster validation
 role mining for role-based access control (RBAC)
 Robust SVD 
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Optimization approach to pattern recognition 
 Given: data in data (input) space
 Goal: Learn structure from data, i.e., interpret 

data relative to a hypothesis class
 Hypothesis class    with hypotheses (solutions)

 Cost function to define a partial order on

C

R : C × X → R≥0
(c,X) 7→ R(c,X)

X ∈ X X

c : X → K
X 7→ c(X)

(e.g., Bn or {1, . . . , k}n)

C
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Pattern recognition and modeling

 Given are data and interpretations of these data, 
i.e., hypotheses.

 Modeling is (partial) ranking of the hypotheses 
encoded as data dependent costs.
 Good/poor hypotheses have low/high costs
 Optimal hypotheses minimize costs and are random 

variables. 

Search for hypotheses that have low costs on 
future data, i.e. generalize well!
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Coding & pattern recognition with noisy 
data
 IT: Space of strings is 

partitioned by code vectors

 PR: Hypothesis class is 

partitioned by code problems
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Coding by Code Problems

 Idea: define a code by transforming a given 
optimization problem 

codebookcodebook with
transformation set transformation set 

 Combinatorial optimization:  
permutation of vertices in a graph

 Identifiable transformations    are Identifiable transformations    are messagesmessages!!

T = {τi ∈ T : 1 ≤ i ≤ 2nρ}

T = {τ : R(c,X) = R(τ ◦ c, τX ◦X)}
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Asymptotical error-free communication
is possible if …

 ... mutual information is bounded by

Bound calculation involves 
partition functions for individual 
and joint costs

lim
n→∞

P (τ̂ 6= τs|τs) = 0

Iβ(τs, τ̂)

ρ < Iβ(τs, τ̂) ≡
1

n
log2

|T | Z(1&2)β

Z
(1)
β Z

(2)
β

=
1

n

Ã
log2

|T |
Z
(1)
β

+ log2
|C(2)|
Z
(2)
β

− log2
|C(2)|
Z
(1&2)
β

!
Z
(ν)
β =

X
c∈C(X(ν)))

exp(−βR(c,X(ν))), ν = 1, 2

Z
(1&2)
β =

X
c∈C(X(1))

exp
³
−β(R(c,X(1)) + R(c,X(2))

´
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Model Selection by Maximization of  
Approximation Capacity 

 Maximize channel capacity w.r.t. approximation 
quality , topology and metric of solution space, 
cost function R(.,.)

sender

problem generator

receiver

s

Communication channel

R(·, τs ◦X(2)), s.t.

X(1),X(2) ∼ P (X) τ̂
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 Hypothesis class: set of binary 

strings

 Communication: 

 Costs of string s: Hamming 

distance

 Mutual information:

ξ(1), ξ(2) ∈ {−1, 1}n

ASC for binary channel consistent with 
Shannon information theory

R(s, ξ(1)) =
Pn

i=1 I{si 6=ξ(1)i }

Iβ = ln 2 + (1 − δ) ln cosh β − ln(cosh β + 1)

for (∗) dIβdβ = 0
(∗)
= ln 2 + (1 − δ) ln(1− δ) + δ ln δ

Channel capacity of BSC

³
δ = 1

n |{i : ξ
(1)
i 6= ξ

(2)
i }|

´
ξ(1) ⇒ ⇒ ξ(2)
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ASC selects optimal (true) 
number of clusters

Approximation CapacityCluster splitting

Experimental Setting: 
5 Gaussians, n=10000, d=2, kmax=10

BIC score
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Role-Based Access Control
 Given: Binary user

permission matrix

 Discretional
Access-Control: 
Direct Assignments of users to permissions

 Role-Based Access Control (RBAC): Permissions are
granted via roles
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Role-Mining for RBAC

 Role-Mining: Given a user-permission
assignment matrix X, find a set of roles U and 
assignments Z such that

 Multi Assignment
Clustering: generative 
approach including
noise model,
inference with DA
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Synthetic Data: Parameter Accuracy vs. 
Approximation Capacity

ASC ranking of model variants complies with 
ranking according to ground truth.

computed with knowledge of ground truth computed without knowledge of ground truth
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Real-World Data: Prediction Error complies
with Approximation Capacity

 Generalization: Can roles predict permissions of new
users?

1. Use few permissions (20%) 
to determine role set

2. Predict hidden/missing

permissions (80%).

 Centroids with maximal 

capacity yield minimal 

generalization error
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Denoising Binary Matrices by truncated
SVD

Boolean matrix with 40% random entries
continuous rank‐k approximation

X5 = U5 S5V5

Rounding as 
approximation
g(Xk) = round (Xk)

X = USV
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Difference to ground‐truth vs. kApproximation capacity vs. k

Maximum of approximation capacity
selects optimal rank k
 Integrate over variations of the signal matrix U. 

rank k rank k
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Conclusion

 Quantization: Noise quantizes
hypothesis classes => symbols

 These symbols can be used for coding!

 Optimal error free coding scheme determines 
approximation capacity of a cost function.

Bounds for robust optimization. 

Quantization of hypothesis class measures 
structure specific information in data. 
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Future Work

 Generalization: replace approximation sets 
based on cost functions by smoothed outputs of 
algorithms (“smoothed generalization”)

 Model reduction in dynamical systems: 
quantize sets of ODEs or PDEs (systems biology)

 Relate statistical complexity, i.e. the 
approximation capacity, to algorithmic or 
computational complexity.


